

$$u \in V \quad a(u, u) = f(u) \quad \forall u \in V$$

$$v_n \in V_h \quad a(v_n, v_n) = f(v_n) \quad \forall v_n \in V_h \quad \text{Galerkin Method}$$

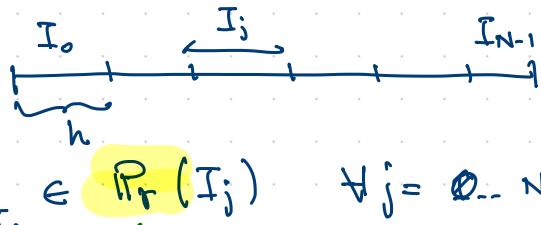
$$\|u - u_h\|_V \leq \frac{1}{\alpha} \inf_{v_n \in V_h} \|u - v_n\|_V \quad \text{Quasi-optimality.}$$

Starting now, we construct spaces V_h via polynomials.

Chapter 2 the finite element method

2.1 Finite element method in 1D

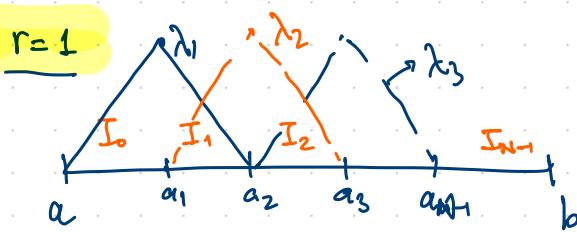
$$S\ell = (a, b)$$



$$V_h = \{v_h \in V : v_h|_{I_j} \in \mathbb{P}_r(I_j) \quad \forall j = 0 \dots N-1\}.$$

\uparrow polynomials of degree r on the interval I_j

$$V = H_0^1(S\ell), \quad H^1(S\ell) \quad (\text{functions in } V_h \text{ must be continuous then})$$



$$V = H_0^1(S\ell)$$

$$\lambda_j \in V_h \quad (r=1)$$

$$\lambda_j = \begin{cases} 1 & x = a_j \\ 0 & x = a_i \end{cases} \quad i \neq j$$

$$V_h = \text{span} \{ \lambda_1, \dots, \lambda_{N+1} \}$$

Remark : $\text{span}\{\lambda_1, \dots, \lambda_{N-1}\} \subseteq V_h$ because $\lambda_j \in V_h \forall j$

$V_h \subseteq \text{span}\{\lambda_1, \dots, \lambda_{N-1}\}$? is it ?

$w_h \in V_h$ is try to write it as a linear comb. of $\{\lambda_j\}$:

$w_h(a_j) = c_j \quad \sum_{j=1}^{N-1} c_j \lambda_j(x) \text{ is equal to } w_h.$

$\left(w_h - \sum_{j=1}^{N-1} c_j \lambda_j \right) \in V_h$

$\left(w_h - \sum_{j=1}^{N-1} c_j \lambda_j \right) \Big|_{x=a_k} = w_h(a_k) - \sum c_j \lambda_j(a_k) = w_h(a_k) - c_k = 0. \quad \forall k$

$\sum_{j \in I_i} c_j \lambda_j = 0 \quad \text{in every } I_j$
 $\rightarrow w_h \in \text{span}\{\lambda_1, \dots, \lambda_{N-1}\}$

definition: degrees of freedom

$\delta_j(f) = f(a_j) \quad j = 0, \dots, N \quad (1)$

definition: the set of degrees of freedom $\{\delta_j\}$

is called **UNISOLVENT** in V_h iff

$\delta_j(v_h) = 0 \quad \forall j \quad \Rightarrow \quad v_h = 0.$

theorem $\{\delta_j\}$ as defined in (1) are unisolvant in V_h .

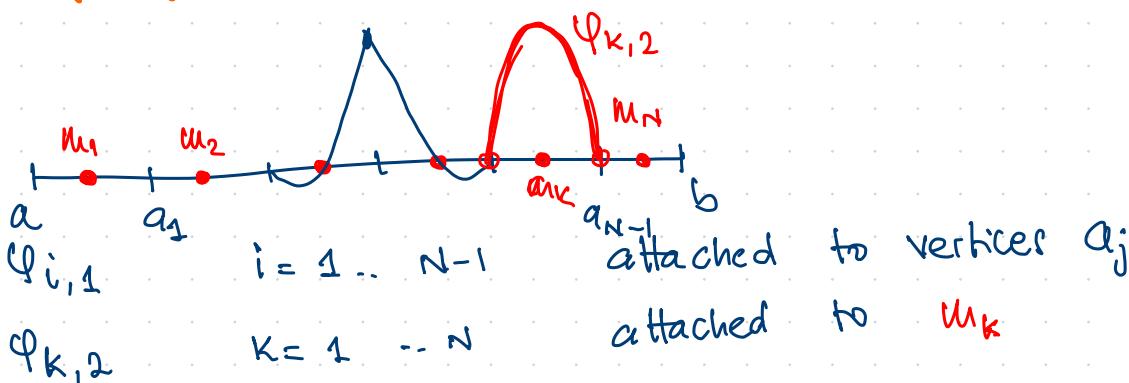
point : exercise for you.

$r=2$

$$V_h = \{ V_h \in H_0^1(\Omega) : (v_n)_{I_j} \in \mathbb{P}_2(I_j) \ \forall j \}.$$

- construction of a set of basis functions.

Lagrange basis (based on point evaluation)



$$\begin{cases} \varphi_{i,1}(a_i) = \delta_{ij} & \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases} \\ \varphi_{i,1}(m_k) = 0 & \forall k. \end{cases}$$

$$\begin{cases} \varphi_{k,2}(m_\ell) = \delta_{\ell k} & \begin{cases} 0 & \ell \neq k \\ 1 & \ell = k \end{cases} \\ \varphi_{k,2}(a_j) = 0 & \forall j. \end{cases} \quad (\text{bubble})$$

proposition

$$V_h = \text{span} \{ \varphi_{i,1}, \varphi_{k,2} \}_{\substack{i=1 \dots N-1 \\ k=1 \dots n}}$$

the set of degrees of freedom for V_h ($r=2$)

is

$$(2) \quad \delta_e(f) = f(x_e) \quad x_e < \frac{a_j}{m_k} + \frac{t_j}{k}.$$

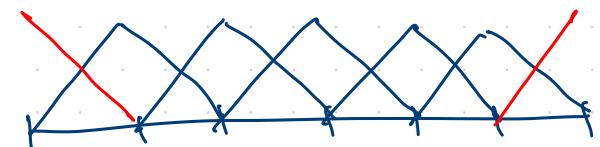
Remark

$$\begin{aligned} & \{ \varphi_{1,1}, \varphi_{2,1} \dots \varphi_{N-1,1}, \varphi_{2,2} \dots \varphi_{N,2} \} \\ & = \{ \varphi_1, \varphi_2 \dots \varphi_L \} \quad L = 2N-1 \end{aligned}$$

$$\delta_e(\varphi_{e'}) = \delta_{ee'} = \begin{cases} 1 & e = e' \\ 0 & e \neq e' \end{cases}$$

Proposition (2) is a unisolvant set of degrees of freedom for V_h

For the space $H^1(\Delta)$



$r=1$

to be added!

✓ to be added!

$$V_h = \text{span } \{ \varphi_1 \dots \varphi_{N_h} \}$$

$$N_h = \dim(V_h)$$

$$u_h \in V_h \quad a(u_h, v_h) = f(v_h) \quad \forall v_h \in V_h$$

this problem becomes \Rightarrow linear system?

$$u_h = \sum c_j \psi_j$$

$$v_h = \psi_e$$

$$\sum c_j a(\psi_j, \psi_e) = f(\psi_e) \quad \forall e.$$

$$A_{je} = a(\psi_j, \psi_e)$$

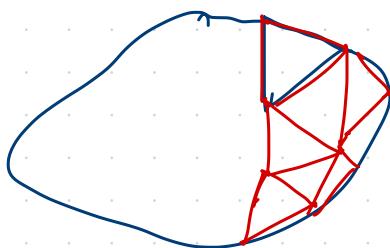
$$(F)_e = f(\psi_e)$$

$$A \subseteq = F$$

stiffness matrix

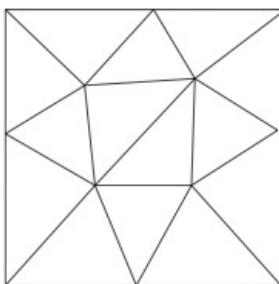
rhs
load

2.2 Finite element in 2D

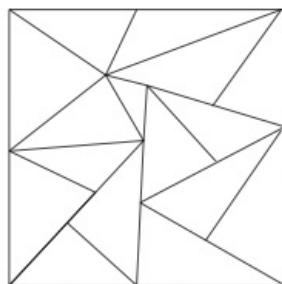


T_h partition of S_2 .

- Indeed we partition in triangles, and T_h is called mesh.
- (quadrangles are also possible)



Conforming mesh



non-conforming mesh

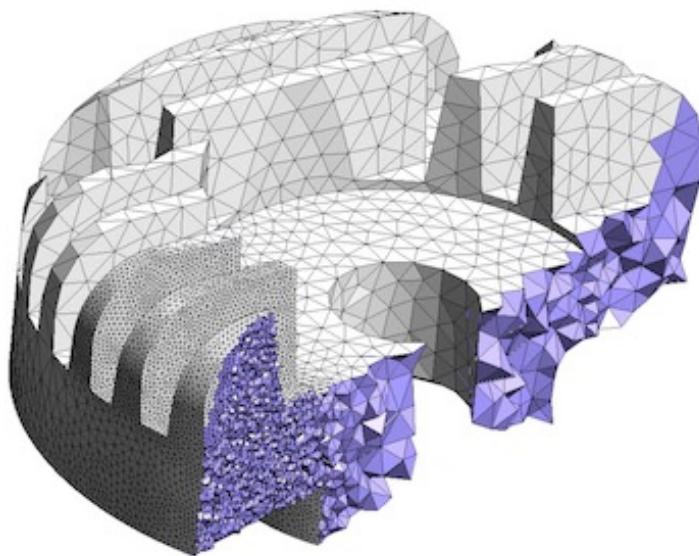
def T_h is a conforming mesh.

K_i, K_j two elements of T_h

$K_i \cap K_j = \begin{cases} \emptyset \\ \text{vertices of } T_h \\ \text{a full edge.} \end{cases}$

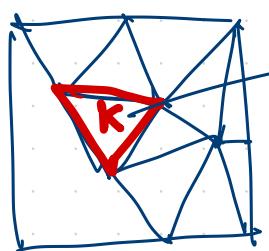
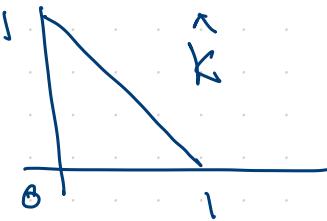
remark:

In 3D T_h is made of tetrahedra
but also quads are possible.

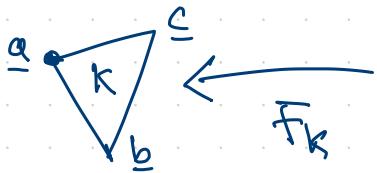


meshing
process.

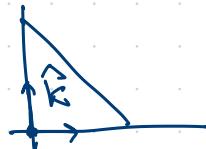
Map to the reference element



reference element



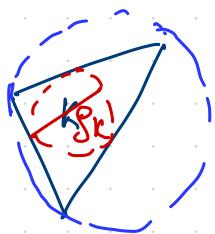
$$f_k = B_k \hat{x} + b_k$$



$$\begin{aligned} a &= \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \\ b &= \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \end{aligned}$$

$$b_k = a$$

$$B_k = \begin{pmatrix} c_1 - a_1 & b_1 - a_1 \\ c_2 - a_2 & b_2 - a_2 \end{pmatrix}$$



h_k = diameter of K
diameter of the outer circle

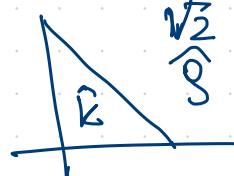
r_k = diameter of the inner circle
inner diameter of K

$$\|B_k\| \leq \frac{h_k}{r_k}$$

$$\|B_k^{-1}\| \leq \frac{\sqrt{2}}{r_k}$$

$$\det B_k = \frac{1}{2} |K|$$

↑ area of K .



exercise (in the exercise section)

definition

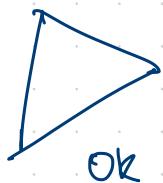
$$\exists C_R \quad R > 0$$

we say T_h is regular if

"independent of h "

$$\forall K \in T_h$$

$$h_k \leq C_R r_k$$



T_h

$$h = \max_{K \in T_h} h_K$$

Construction of finite element spaces

$$\Omega \subseteq \mathbb{R}^2$$

T_h a family of meshes parameterized in h .

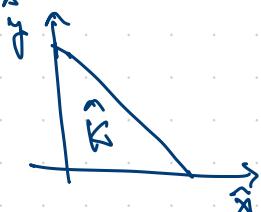
$$V_h = \{ v_h \in H_0^1(\Omega) \cap H^1(\Omega) : v_h|_K \in \{ P_r(K) \} \quad \text{for all } K \}$$

polynomials of degree r on K .

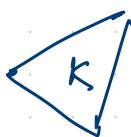
$r=1$

for the time being.

Remark



$P_1(K)$



$$P_1(K) = \text{span} \{ \hat{x}, \hat{y}, 1 - \hat{x} - \hat{y} \}$$

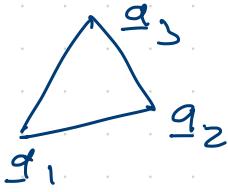
baricentric coordinates of K

$$\hat{\varphi}_1 = \hat{x}, \hat{\varphi}_2 = \hat{y}, \hat{\varphi}_3 = 1 - \hat{x} - \hat{y}$$

Basis functions for $P_1(K)$ are constructed as:

$$\varphi_j(F_K \hat{x}) = \hat{\varphi}_j(\hat{x})$$

$\varphi_1, \varphi_2, \varphi_3$ are the barycentric coordinates of

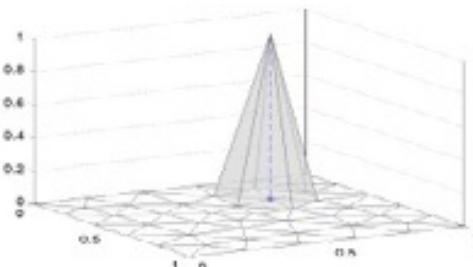
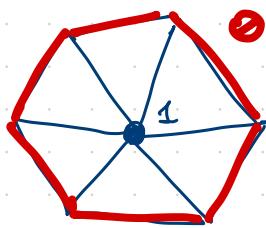


$$\varphi_i (\underline{\alpha_j}) = \delta_{ij}.$$

Theorem

$$V_h = \text{span} \{ \varphi_v, v \text{ internal vertex of } \mathcal{T}_h \}$$

where $\varphi_v \in V_h$, $\varphi_v = \begin{cases} 1 & \text{on } v \\ 0 & \text{on all other vertices of } \mathcal{T}_h \end{cases}$



$\varphi_v|_K$ = barycentric coordinate of v in K for the vertex v , $\forall K$ that has v as a vertex.

Proof of the theorem

- $\text{span} \{ \varphi_v, v \text{ internal vertex} \} \subseteq V_h$ easy.
- $V_h \subseteq \text{span} \{ \varphi_v \}$ should be proved (next time)

$\dim(V_h) = N_h = \# \text{ internal vertices of } V_h$.

Degrees of freedom

$$\delta_j(f) = f(\mathbf{x}_j)$$

\mathbf{x}_j = free j vertex of T_h .

D.o.f. are used to define "interpolation" operator.

$$f \in C^0(\Omega)$$

$$\Pi_h f(x) = \sum_{j=1}^{N_h} \underbrace{f(\mathbf{v}_j)}_{\text{degree } r=1.} \delta_j(f) \varphi_{\mathbf{v}_j}(x)$$

$\Pi_h f$ is called interpolation of f on V_h .